Publicado el

Análisis de gas disuelto basado en fiabilidad: un nuevo enfoque para DGA

Síguenos en la web

Una prueba esencial utilizada para identificar fallas incipientes al interior de los transformadores es el Análisis de Gases Disueltos (DGA). Esta prueba, evalúa el transformador al identificar e interpretar ciertos gases que se generan y disuelven en el aceite dieléctrico cuando hay un problema interno en el sistema material de aislamiento (aceite y papel), generado por calor extremo y energía eléctrica. Gases de hidrocarburos e hidrogeno son formados cuando el aceite sufre un estrés térmico o descargas eléctricas. Los principales gases formados por el estrés o desgaste del papel aislante son óxidos de carbono – monóxido (CO) y dióxido de carbono (CO2). Las muestras de aceite se extraen periódicamente del transformador y son analizadas para ver que gases se están formando. Si hay formación de gases, las tendencias de cambio en las concentraciones de los gases generados pueden ser usados para determinar el tipo de falla o defecto (térmica, descarga eléctrica o descarga parcial).

IDENTIFICACIÓN DEL TIPO DE FALLA
La interpretación de los datos del análisis de DGA es un proceso que comprende tres pasos:

(a) Detectar la producción de gas

(b) Evaluar la severidad de la producción de gas

(c) Identificar el tipo de falla responsable de la producción de gas, mientras el equipo continúa en operación.

El tercer paso en el proceso - la identificación del tipo de falla en equipos en operación - es bien conocido. Los métodos de relación de gases como el Triángulo Duval son altamente confiables, sin embargo, los dos primeros pasos no son fáciles. Los métodos convencionales de interpretación de DGA dependen en límites numéricos para la detección de producción significativa de gas, así como para evaluar la severidad de la falla que presenta el equipo en operación. Hay dos problemas en esto:

 

A. Primera Etapa
Las concentraciones de gas y los límites de la tasa de cambio no son efectivos para la detección temprana de problemas, es más, tienden a crear falsas alarmas. Dado que pueden ocurrir problemas serios en
cualquier nivel de concentración del gas, esperar a que se exceda un límite de concentración crítico significa que a veces los problemas no son detectados hasta que se produce un daño serio, interrupciones forzadas, o la falla catastrófica que termina sacando al equipo de operación.

B. Segunda Etapa
Segundo, la interpretación de los límites de DGA Convencional no consideran como se correlaciona el DGA con las averías del transformador. ¿Cómo podemos saber que un transformador con 300 µL/L (ppm) de etileno requiere un estudio más detallado y sí debería ser considerado para su reemplazo?.

Para evitar estos problemas, los investigadores han aplicado los primeros principios científicos para comprender mejor como se relaciona la generación de los gases con la falla que saca de operación el transformador. El resultado de esta investigación es el Análisis de Gases Disueltos basados en Fiabilidad en sus siglas en inglés R-DGA, un nuevo método para la interpretación de DGA que cuantifica el riesgo de avería del transformador basado en la producción de gas de falla.

III. GASES DISUELTOS BASADOS EN FIABILIDAD EN SUS SIGLAS EN INGLÉS R-DGA
Las concentraciones de gas de falla de un transformador pueden ser usadas para calcular el índice de energía de falla que representa la cantidad de energía disipada en el aislamiento por una falla interna. Para cada gas de hidrocarburo, metano (CH4), etano (C2H6), etileno(C2H4) y acetileno (C2H2), se calculó un calor de formación (usando la termoquímica) mostrando cuanta energía es necesaria para formar una molécula de cada gas a partir de una molécula de aceite mineral. Las concentraciones de los gases detectados en una muestra de aceite son usadas para calcular la suma ponderada del calor de formación
para cada gas, lo cual es llamado índice de energía normalizado del aceite mineral (NEIoil). De manera similar, las concentraciones de CO y CO2 en la muestra de aceite son usadas para calcular la suma ponderada de su calor de formación a partir de la celulosa, lo cual es llamado el índice de energía normalizada para el papel aislante (NEIpaper).